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ABSTRACT 15 

The Late Ordovician mass extinction (LOME) was the first of the “Big Five” 16 

Phanerozoic extinction events and comprised two extinction pulses. Proposed kill 17 

mechanisms include glacially-induced global cooling and the expansion of water column 18 

anoxia and/or euxinia (sulfidic conditions), but no general consensus has been reached 19 

with regard to the precise role of these mechanisms. A more definitive understanding is 20 

hampered by poorly constrained temporal links between the extinction pulses and climate 21 

change, and by uncertainty over the spatial distribution and intensity of euxinia. Here, we 22 
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utilize Fe speciation and Mo concentrations, in addition to the chemical index of 23 

alteration weathering proxy, to reconstruct ocean redox conditions and climate change 24 

across a Late Ordovician to Early Silurian shelf to slope transect on the Yangtze Shelf 25 

Sea. These data show two cycles of expanded euxinia corresponding to the two pulses of 26 

the LOME, suggesting a strong causal relationship. Significantly, we show that 27 

intermittent or weak euxinia developed during the first extinction pulse, which likely 28 

accounts for the loss of benthic fauna and some planktonic organisms and nektonic 29 

groups. By contrast, the development of more intense euxinia throughout the water 30 

column during the second pulse likely drove survival fauna extinct. Superimposed upon 31 

this, significant global cooling occurred across the first extinction phase, reflecting a 32 

secondary role in driving certain low-latitude taxa extinct. 33 

INTRODUCTION 34 

The Late Ordovician mass extinction resulted in the extinction of ~85% of marine 35 

animal species (Sheehan, 2001) across a relatively short time span (Brenchley et al., 36 

1994; Finnegan et al., 2011). The LOME comprised two pulses: the first pulse (LOMEI-37 

1) occurred at the Katian/Hirnantian transition and was the primary extinction phase 38 

during which benthic organisms, planktonic organisms and nektonic groups became 39 

extinct. The second pulse (LOMEI-2) occurred during the late Hirnantian, when 40 

survivors of the first pulse became extinct (Harper et al., 2014). Numerous lines of 41 

evidence have demonstrated that rapid global cooling occurred during the late 42 

Ordovician, broadly coincident with the LOME (e.g., Finnegan et al., 2012; Crampton et 43 

al., 2016). However, the timing of glaciation is controversial and does not precisely 44 

match the onset of the LOME (see the GSA Data Repository1 for further details). 45 
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Conversely, ocean anoxia and widespread euxinia have been proposed as kill 46 

mechanisms (e.g., Zhang et al., 2009; Hammarlund et al., 2012; Ahm et al., 2017), but 47 

the spatial and temporal distribution, and intensity, of anoxia/euxinia, remain largely 48 

unknown.  49 

Here, we reconstruct the evolution of Late Ordovician (Katian Stage) to Early 50 

Silurian (Rhudanian stage) water column redox conditions across a shelf to slope depth 51 

transect in the Yangtze Shelf Sea, South China (Fig. 1), based on Fe-speciation and Mo 52 

concentrations. In addition, we utilize the chemical index of alteration (CIA) weathering 53 

index (Nesbitt and Young, 1982) to evaluate contemporaneous climate change. Our 54 

multi-proxy approach allows a detailed evaluation of the temporal and spatial intensity of 55 

ocean redox conditions and coeval climate change, thus resolving the roles of these 56 

different mechanisms in driving the LOME. 57 

GEOLOGIC SETTING 58 

South China was located near the equator during the Late Ordovician (Torsvik 59 

and Cocks, 2013). From the Late Ordovician to Early Silurian, the Yangtze shallow 60 

carbonate platform in South China evolved into a siliciclastic-dominated deep shelf basin, 61 

called the Yangtze Shelf Sea, which deepened northwards to the Panthalassic Ocean 62 

(Figure 1 and Fig. DR1). Samples were collected from an inner shelf section (Shuanghe; 63 

SH) (Fig. DR2), a mid-shelf section (Qiliao; QL) (Fig. DR3) and an outer shelf to slope 64 

section (Tianba; TB) (Fig. DR4), primarily spanning the Late Ordovician (Katian Stage) 65 

through to the Early Silurian (Rhudanian stage). Full details of the geologic setting and 66 

methods are given in the GSA Data Repository1. 67 

RESULTS 68 



Publisher: GSA 
Journal: GEOL: Geology 
DOI:10.1130/G40121.1 

Page 4 of 16 

Water Column Redox Conditions 69 

Fe speciation and redox-sensitive trace metals (e.g., Mo) are well-established 70 

proxies for water column redox conditions (e.g., Poulton and Canfield, 2011; Scott and 71 

Lyons, 2012). Using these techniques (see the GSA Data Repository1 for full details), we 72 

identify four distinct intervals of evolving redox conditions across the Yangtze shelf 73 

transect (Fig. 2). For Interval I, representing the early to Middle Katian stage (D. 74 

Complantus and D. Complexus graptolite zones), all sections have variable FeHR/FeT 75 

ratios and low Mo concentrations (<25 ppm), coupled with low FePy/FeHR ratios (Fig. 2), 76 

suggesting fluctuations between oxic and anoxic ferruginous (Fe-rich) bottom waters. 77 

During Interval II, representing the late Katian stage (P. pacificus graptolite zone) 78 

and the first Late Ordovician mass extinction interval (LOMEI-1), most samples across 79 

the bathymetric transect have elevated FeHR/FeT ratios, reflecting persistent anoxia (Fig. 80 

2). Mo concentrations in the mid-shelf section are generally above 25 ppm but less than 81 

100 ppm, likely reflecting the development of at least intermittent euxinia below the 82 

LOMEI-1 interval (Scott and Lyons, 2012), although such a signal might also develop 83 

under weakly euxinic conditions if sulfide concentrations fluctuated around the level 84 

(~11 µM) where dissolved molybdate becomes particle reactive (Erickson and Helz, 85 

2000). Higher Mo contents (80–116 ppm) then occur at the LOMEI-1 horizon, suggesting 86 

persistent euxinia (Scott and Lyons, 2012). By contrast, Mo contents only increase just 87 

before the LOMEI-1 horizon on the inner shelf and the outer shelf/slope, but moderate 88 

Mo contents (>25 ppm) at these two sites, combined with high FePy/FeHR ratios on the 89 

inner shelf, support the development of intermittent or weak euxinia in shallower and 90 

deeper settings across the first extinction horizon (Fig. 2). 91 
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For Interval III, during the early Hirnantion (N. extraordinarius graptolite zone), 92 

elevated FeHR/FeT, FePy/FeHR and Mo on the inner shelf suggest persistent euxinia, before 93 

a return to anoxic ferruginous conditions at the top of this zone (Fig. 2). This interval is 94 

more condensed in the deeper water sections, but a clear transition from euxinic to 95 

ferruginous conditions in deeper waters is supported by low concentrations of Mo (<25 96 

ppm) and low FePy/FeHR. 97 

The base of Interval IV during the late Hirnantian and Rhudanian stages (N. 98 

persculptus and A. ascensus graptolite zones) marks the second (LOMEI-2) extinction 99 

horizon. Water column redox dynamics across the LOMEI-2 horizon are very similar to 100 

the LOMEI-1 horizon, whereby euxinia develops on the mid-shelf prior to the extinction 101 

horizon (as indicated by elevated Mo concentrations) (Fig. 2). The extinction horizon 102 

itself shows evidence of persistent strong euxinia across all three sections, as indicated by 103 

uniformly high Mo concentrations (>100 ppm) across the basin transect, and by high 104 

FePy/FeHR ratios in the inner-shelf section. 105 

Chemical Index of Alteration and Palaeoclimatic Changes 106 

Consistent trends are apparent in CIA values across the Yangtze shelf transect 107 

(Fig. 3). High values throughout the Katian stage suggest relatively intense chemical 108 

weathering, reflecting warm climatic conditions. However, a gradual decrease in CIA 109 

values through the Katian stage prior to the LOMEI-1 horizon implies progressive 110 

cooling. During the LOMEI-1 interval, CIA values show some scatter across the basin, 111 

but values tend to decrease before reaching a minimum between the two extinction 112 

horizons (Fig. 3). These very low CIA values have been observed elsewhere in the 113 

Yangtze basin (Yan et al., 2010), suggesting that chemical weathering intensity was 114 
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significantly decreased under cold climatic conditions. The low CIA values correlate with 115 

a pronounced positive 13Corg excursion (Fig. 3), which represents the global Hirnantian 116 

13Corg excursion (HICE) (Underwood et al., 1997; LaPorte et al., 2009) (Fig. 4). 117 

Following this minimum, CIA values increase above the LOMEI-2 horizon (Fig. 3), 118 

suggesting a gradual increase in chemical weathering, but values remain below those 119 

found lower in the section, implying the maintenance of relatively cool climatic 120 

conditions. 121 

DISCUSSION 122 

A Redox Control on the Extinction Pulses? 123 

Our data can be considered in the context of previous studies to provide a more 124 

widespread evaluation of temporal changes in ocean redox conditions, and hence links to 125 

the two extinction pulses (Fig. 4). Yan et al. (2012) studied an inner shelf section of the 126 

Yangtze Sea (Nanbazi; NBZ), representing a shallower water setting in comparison to 127 

our sections. When combined, the four sections show the initial spread of anoxia from the 128 

mid-shelf and across the Yangtze Shelf Sea during the Katian stage (Fig. 4). These redox 129 

conditions then intensified, with euxinia originating on the mid-shelf prior to the LOMEI-130 

1 horizon, followed by an expansion of intermittent or weak euxinia to the inner shelf and 131 

outer shelf/slope during the first extinction phase itself, although the shallowest waters do 132 

not show evidence of euxinia at this time (Fig. 4). 133 

The three more distal sections all show clear increases in total organic carbon 134 

(TOC) during the development of euxinia across the LOMEI-1 horizon (Figs. DR2-DR4), 135 

reflecting an increase in regional burial rates of organic matter. This relationship between 136 

euxinia and TOC has also been observed at an inner shelf location off Baltica 137 
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(Hammarlund et al., 2012), and in the deep marine Vinini Creek section in Nevada (Ahm 138 

et al., 2017), suggesting that expanded euxinia may have been a widespread phenomenon 139 

across the first extinction pulse of the LOME. 140 

During the early Hirnantian as sea level decreased (Brenchley et al., 2006; Yan et 141 

al., 2012) between the two extinction horizons, redox conditions varied across the 142 

Yangtze Shelf Sea (Fig. 4). Geochemical evidence suggests that the shallowest water 143 

NBZ section became oxic-suboxic, presumably due to the sea level regression (Yan et al., 144 

2012), which is similar to records from the Baltica inner shelf at Bilegrav, Denmark 145 

(Hammarlund et al., 2012). In addition, the extent of euxinic waters gradually decreased 146 

across the shelf, giving way to anoxic ferruginous conditions at the point of maximum 147 

retreat (Fig. 4). Thus, during the early Hirnantian stage, the evolution of ocean redox 148 

chemistry across the Yangtze Shelf Sea, and probably elsewhere, was mainly driven by 149 

falling sea level. This sea-level fall was itself a consequence of global cooling, 150 

highlighting the close links between the evolution of water column redox and climate in 151 

the Late Ordovician. 152 

As temperatures increased and sea level rose, a return to anoxia and widespread 153 

euxinia is evident across the Yangtze Shelf Sea, coincident with the LOMEI-2 horizon 154 

(Fig. 4). Water column redox dynamics across this second extinction pulse are very 155 

similar to those of the first pulse (Fig. 4), whereby euxinia originates on the mid-shelf 156 

and subsequently spreads to the inner shelf and outer shelf/slope at the extinction interval. 157 

One significant difference, however, is that Mo concentrations are much higher across the 158 

three euxinic sites during the second extinction pulse (Fig. 2), likely indicating persistent 159 

euxinia (Scott and Lyons, 2012) with relatively high concentrations of dissolved sulfide. 160 
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In addition, evidence from elsewhere suggests that euxinia was particularly widespread 161 

on continental shelves at this time (Hammarlund et al., 2012; Melchin et al., 2013; Zhou 162 

et al., 2015). The development of euxinia is initiated at the maximum extent of the 13Corg 163 

excursion observed at a variety of sites (Fig. 4). This is consistent with increased 164 

availability of nutrients to drive productivity during the maximum extent of glaciation, 165 

facilitated either by enhanced release of nutrients from organic matter degradation in the 166 

water column as sea level fell (Hammarlund et al., 2012) or by nutrient input from 167 

exposed continental shelves. 168 

The Intensity of Euxinia as a Selective Kill Mechanism 169 

Sulfide is highly toxic to almost all eukaryotes at micromolar concentrations 170 

(Knoll et al., 2007) and water column euxinia has been implicated as a major driver of 171 

several extinction events (e.g., Wignall and Twitchett, 1996). However, our observation 172 

of a difference in the relative intensity or persistence of euxinia across the two extinction 173 

horizons, combined with overall global cooling, allows a more nuanced evaluation of the 174 

precise roles of sulfide and climate change in driving the two pulses of the LOME across 175 

the Yangtze shelf transect. 176 

The LOMEI-1 interval mainly eradicated benthic fauna, including sessile 177 

(brachiopods, rugose and tabulate corals) and mobile (trilobites) animals on the deep 178 

shelf, in addition to phytoplankton and zooplankton such as graptolites (Brenchley et al., 179 

2001). It is difficult to invoke global cooling as a kill mechanism for many of the high-180 

latitude, cool-water taxa, particularly deep-shelf benthic faunas (Harper et al., 2014). 181 

However, glacially-induced global cooling is more significant for lower-latitude taxa, 182 

particularly phytoplankton and zooplankton such as graptolites (Brenchley et al., 2001; 183 
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Crampton et al., 2016). Hence global cooling, rather than the spread of euxinia, was 184 

likely responsible for the loss of phytoplankton and zooplankton. By contrast, the 185 

development of intermittent or weak euxinia across the LOMEI-1 horizon implies that 186 

sulfide may have been largely restricted to bottom waters across the shelf to upper slope, 187 

and thus sulfide was likely a major kill mechanism for benthic fauna only. 188 

During the LOMEI-2 interval, more persistent, intense and widespread euxinia is 189 

indicated, which is entirely consistent with an observed loss of survival fauna across a 190 

wide range of water depths (Harper et al., 2014). The implication of sulfide, rather than 191 

global cooling, as the main kill mechanism during the second extinction phase also 192 

reconciles our observation, based on the CIA weathering index, of a gradual return to 193 

warmer climatic conditions during this interval (Fig. 4). 194 

CONCLUSIONS 195 

The Yangtze shelf transect allows a particularly well-resolved dynamic-redox 196 

system to be reconstructed across a bathymetric shelf transect. The system shows two 197 

cycles of water column euxinia, with the first being an expansion of intermittent or 198 

weakly euxinic bottom waters at the end of the late Katian stage, and the second being a 199 

period of more intense persistent euxinia during the late Hirnantian stage. These two 200 

euxinic episodes correspond to the two pulses of the LOME, suggesting that the LOME 201 

was trigged by the expansion of euxinia. However, the intensity of euxinia throughout the 202 

water column apparently affected the nature of each extinction pulse, with the first 203 

euxinic episode affecting benthic fauna only, while the second episode affected survival 204 

fauna throughout the water column. Superimposed on this redox control, global cooling 205 
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placed additional stress on marine fauna, and likely affected lower-latitude taxa, in 206 

particular phytoplankton and zooplankton such as graptolites. 207 
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 305 

FIGURE CAPTIONS 306 

 307 

Figure 1. Geological reconstruction. (A) Late Ordovician (445 Ma) palaeogeography 308 

showing South China (Torsvik and Cocks, 2013). Red circle represents the Shuanghe 309 

(SH) inner shelf section; green circle represents the Qiliao (QL) mid-shelf section; pink 310 

circle represents the Tianba (TB) outer shelf-slope section. Black circle represents the 311 

Nanbazi (NBZ) shallow inner shelf section (Yan et al., 2012). (B) Simplified 312 

palaeogeographic map of the Yangtze Shelf Sea during the Late Ordovician showing 313 

section localities (scale bar = 100 km). (C) Schematic cross-section of the Late 314 

Ordovician Yangtze Shelf Sea showing estimated relative palaeo-depths and study 315 

sections. 316 
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 317 

Figure 2. Fe speciation and Mo concentration data for the Yangtze Shelf Sea. Samples 318 

with FeT >0.5 wt% (closed circles) can be utilized for Fe speciation (Clarkson et al., 319 

2014); FeHR/FeT ratios are not presented for samples with FeT <0.5 wt% (open circles). 320 

Dashed line at 0.22 shows the upper limit for identification of oxic conditions from 321 

FeHR/FeT ratios; dashed line at 0.38 indicates the lower limit for identification of anoxic 322 

conditions. Dashed lines at 0.7 and 0.8 for FePy/FeHR ratios show the range above which 323 

euxinic conditions are indicated and below which ferruginous (FER) conditions are 324 

indicated. Yellow arrows in the LOMEI-2 horizon indicate samples with higher values 325 

than the range shown. Four time intervals of differing redox conditions are defined by I, 326 

II, III and IV. Extinction intervals shown in pink represent the first (LOMEI-1) and 327 

second (LOMEI-2) pulses of the late Ordovician mass extinction. Graptolite zones: D. cn. 328 

– Dicellograptus Complanatus; D. cx. – Dicellograptus Complexus; M. e. –329 

Metabolograptus extraodinarius; M. p. –Metabolograptus persculptus; A. a. – 330 

Atavograptus ascensus. Approximate positions of graptolite zone boundaries are 331 

represented by dashed lines. Rhud. = Rhuddanian. 332 

 333 

Figure 3. Chemical Index of Alteration (CIA) and C isotope systematics. Purple arrows 334 

indicate samples with values outside the range shown. Gray bold lines represent CIA 335 

trends for the three sections. 336 

 337 

Figure 4. Summary of global records in relation to climate change and redox conditions 338 

across the Yangtze Shelf Sea. (A) Regional 13Corg excursions (the global Hirnantian C-339 
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isotope excursion) from South China, Dob’s Linn (DL), Scotland (Underwood et al., 340 

1997), Blacktone River (BR), Canada (LaPorte et al., 2009) in Laurentia, and Bellegrav 341 

(BL), Denmark in Baltica (Hammarlund et al., 2012). (B) Summary of climate and redox 342 

changes across the Yangtze Shelf Sea. (C) Schematic illustrating redox dynamics across 343 

the Yangtze Shelf Sea. Changes in sea level (relative to sea level position during the 344 

Middle Katian stage) are shown by fine dashed lines in (C). 345 

 346 

1GSA Data Repository item 2018xxx, more details of section description, analytical 347 

methods, geochemical data and cross plots, is available online at 348 

http://www.geosociety.org/datarepository/2018/ or on request from 349 

editing@geosociety.org. 350 


